- Print
- DarkLight
- PDF
Article summary
Did you find this summary helpful?
Thank you for your feedback
The numeric-matrix parser will load data from multiple rows and columns from a source data table into numeric variables within collections.
It inherits attributes and data loading behaviors from the abstract matrix parser type.
Example
{
"parser_type": "numeric-matrix",
"collection": "collection_name",
"variable": "variable_name,
// The parser does all the work to load the data into a single
// collection with multiple variables. These will then be converted
// into a matrix in post-processing.
"parser": {
"parser_type": "numeric-row",
"variable": {
"parser_type": "categorical",
"column": "row_header_column_name"
}
}
}
Attribute - use_float
The use_float
attribute is optional. It will default to false.
{
"parser_type": "numeric-matrix",
"collection": "collection_name",
"variable": "variable_name,
"parser": {...},
// When this flag is set, 32-bit floats will be used
// to store numeric values instead of 64-bit doubles.
"use_float": true
}
Attribute - compress
The compress
attribute is optional. It will default to dense.
{
"parser_type": "numeric-matrix",
"collection": "collection_name",
"variable": "variable_name,
"parser": {...},
// This will enforce a sparse representation of the matrix
// in memory.
"compress": "sparse"
}
Attribute - null_value
The null_value
attribute is optional. It will default to NaN.
{
"parser_type": "numeric-matrix",
"collection": "collection_name",
"variable": "variable_name,
"parser": {...},
// Null value will define the default value to use when data
// is missing for entities.
"null_value": 0
}
Was this article helpful?